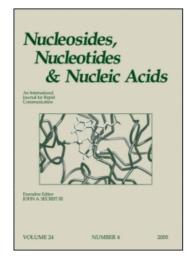
This article was downloaded by:


On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Studies on the Glycosylation of Pyrrolo[2,3-*d*] Pyrimidines with 1-*O*-Acetyl-2,3,5-Tri-*O*-Benzoyl-β-D-Ribofuranose: The Formation of Regioisomers During Toyocamycin and 7-Deazainosine Syntheses

Peter Leonard^a; Sachin A. Ingale^{ab}; Ping Ding^{ab}; Xin Ming^a; Frank Seela^{ab}

^a Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Münster, Germany ^b Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Osnabrück, Germany

To cite this Article Leonard, Peter , Ingale, Sachin A. , Ding, Ping , Ming, Xin and Seela, Frank(2009) 'Studies on the Glycosylation of Pyrrolo[2,3-d] Pyrimidines with 1-O-Acetyl-2,3,5-Tri-O-Benzoyl- β -D-Ribofuranose: The Formation of Regioisomers During Toyocamycin and 7-Deazainosine Syntheses', Nucleosides, Nucleotides and Nucleic Acids, 28: 5, 678 — 694

To link to this Article: DOI: 10.1080/15257770903091953 URL: http://dx.doi.org/10.1080/15257770903091953

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Nucleosides, Nucleotides and Nucleic Acids, 28:678-694, 2009

Copyright © Taylor & Francis Group, LLC ISSN: 1525-7770 print / 1532-2335 online DOI: 10.1080/15257770903091953

STUDIES ON THE GLYCOSYLATION OF PYRROLO[2,3-d] PYRIMIDINES WITH 1-O-ACETYL-2,3,5-TRI-O-BENZOYL- β -D-RIBOFURANOSE: THE FORMATION OF REGIOISOMERS DURING TOYOCAMYCIN AND 7-DEAZAINOSINE SYNTHESES

Peter Leonard,¹ Sachin A. Ingale,^{1,2} Ping Ding,^{1,2} Xin Ming,¹ and Frank Seela^{1,2}

 1 Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Münster, Germany

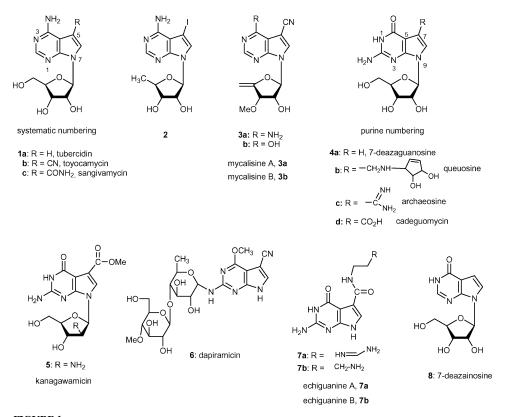
□ Glycosylation of silylated 4-amino-6-bromo-5-cyano-7H-pyrrolo[2,3-d]pyrimidine (9) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (10) under "one-pot" glycosylation conditions (MeCN, TMSOTf) yielded the N-7 isomer 11 together with the N-1 compound 13 (ratio = 2:1). When the same conditions were applied to 4-hydroxy-7H-pyrrolo[2,3-d]pyrimidine (21) the N-3 isomer 22 was the only glycosylation product formed in almost quantitative yield.

Keywords Nucleosides; pyrrolo[2;3-d]pyrimidines; glycosylation; toyocamycin; 7-deazainosine; NMR-spectra

INTRODUCTION

The natural occurrence and the extraordinary biological and pharmacological properties of 7-deazapurine nucleosides have been the reason for studies on their synthesis, transformation, incorporation in nucleic acids, and the evaluation of their biochemical properties.^[1–3] These subjects have already been treated in a number of reviews^[4–12] (if not otherwise stated

Received 6 February 2009; accepted 28 May 2009.


In honor and in celebration on the occasion of the 70th birthday of Morris J. Robins, a good friend and an outstanding scientist.

We thank Dr. Simone Budow and M.Sc. Suresh Pujari for reading the manuscript. Financial support by ChemBiotech, Münster, Germany is gratefully acknowledged.

Address correspondence to Frank Seela, Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Munster, Germany. E-mail: Frank.Seela@uni-osnabrueck.de; Seela@uni-muenster.de

²Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Osnabrück, Germany

systematic numbering is used throughout the manuscript). Pyrrolo [2,3d pyrimidine nucleosides are naturally occurring and have been isolated as monomers and as constituents of nucleic acids. [4,13] Among them are ribonucleosides such as tubercidin (1a) isolated from Streptomyces tubercidicus [14] as well as its 5-substituted derivatives toyocamycin (1b) and sangivamycin (1c) (Figure 1), which are produced by Streptomyces toyocaensis or other Streptomyces strains. [15,16] Other pyrrolo [2,3-d] pyrimidine nucleosides have been isolated from marine organisms, showing biological activity as metabolites or antimetabolites; some of them carry halogens at C-5-position of the pyrrolo[2,3-d]pyrimidine moiety such as 5'-deoxy-5-iodotubercidin (2).[17] Pyrrolo[2,3-d]pyrimidine ribonucleosides are also found as constituents of tRNA: Queuosine (4b) or archaeosine (4c) represent 7-substituted 7deazaguanine ribonucleosides, which are formed by post-modification of tRNA. [18] The parent compound 7-deazaguanosine (4a) does not occur in nature. It was synthesized in our laboratory in 1981.^[19] Other naturally occurring pyrrolo[2,3-d]pyrimidine nucleoside antibiotics have been isolated, including mycalisines A (3a) and B (3b),[20,21] cadeguomycin (4d), [22] the antibiotic AB-116 (kanagawamicin, 5), [23] and dapiramicin (6) (Figure 1). [24-26] Echiguanines A and B (7a,b) which can act as kinase

inhibitors have been isolated from $Streptomyces^{[27]}$ and were synthesized chemically, [28] 7-deazainosine (8) has been isolated from the ascidian $Aplidium\ pantherinum^{[29]}$ and was prepared in our laboratory as well as by others. [30, 31]

Considerable work has been done in the development of methods for the chemical synthesis of pyrrolo [2,3-d] pyrimidine nucleosides related to tubercidin $(1a)^{[32,33]}$ and its derivatives such as toyocamycin (1b) as well as 7-deazainosine (8).[30,31,34] Different to purine nucleosides, the synthesis by electrophilic attack of a sugar cation on the nitrogen of the pyrrolo [2,3-d] pyrimidines affects the aromatic character of the pyrrole system. Consequently, the pyrrole nitrogen is rather inert against glycosylation with the result that the reaction might be directed into the pyrimidine moiety^[35] or takes place at the pyrrole carbons.^[36,37] Glycosylation reactions performed on pyrrolo[2,3-d]pyrimidines under acidic conditions results in poor yields when the pyrrole moiety is not functionalized. [35-38] The development of the stereoselective nucleobase anion glycosylation and/or using activated ribo sugar derivatives (ribofuranosyl halides) made pyrrolo[2,3-d]pyrimidine 2'-deoxyribonucleosides easily accessible, but in the case ribonucleosides the reaction shows drawbacks as ortho amides are formed in many cases due to neighbour-group participation of sugar acyl protecting groups at the 2-position. [39-43] The current work focuses on the outcome of the glycosylation of the silylated nucleobases of toyocamycin (1b) and 7-deazainosine (8) with 1-O-acetyl-2,3,5-tri-O-benzoyl-Dribofuranose (10) in an "one-pot" reaction employing TMSOTf as catalyst and MeCN as solvent.

RESULTS AND DISCUSSION

1. Glycosylation of 4-amino-6-bromo-5-cyano-7*H*-pyrrolo [2,3-*d*]pyrimidine (9) with 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl-β-D-ribofuranose (10)

Earlier, the synthesis of toyocamycin (**1b**) was described by the laboratories of Bobek^[44] and Townsend. [38,45] Both authors used 4-amino-6-bromo-5-cyano-7*H*-pyrrolo[2,3-*d*]pyrimidine (**9**) for the glycosylation and 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (**10**) as sugar component. Bobek employed a sequential silylation protocol with hexamethyldisilazane followed by trimethylsilyl chloride. The glycosylation of the silylated nucleobase was performed in dichloroethane with trimethylsilyl trifluoromethanesulfonate (TMSOTf) as catalyst at 80°C for 18 h resulting in a yield of 88% of compound **11**. Townsend described a "one-pot" procedure in which *N*,*O*-bis(trimethylsilyl)acetamide (BSA) was used as silylating agent, TMSOTf as catalyst and acetonitrile as solvent. Here, the reaction time was significantly shorter (3 hours at 80°C) and the yield was somewhat

lower (75%). Both authors described compound 11 as the only reaction product.

We performed the same reaction at exactly the same conditions as described by Townsend. For this purpose, 4-amino-6-bromo-5-cyano-7Hpyrrolo[2,3-d]pyrimidine (9) was prepared as described. [46a-c] Nucleobase **9** was silvlated by the addition of 2 equivalents of BSA in dry acetonitrile at room temperature. Then, 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (10, 1 equivalent) and trimethylsilyl trifluoromethanesulfonate (3 equivalents) were added resulting in a clear yellow solution which was heated at 80°C for 3 hours. The formation of two main products (R_F 0.45, 0.64) was indicated by TLC (solvent CH₂Cl₂/EtOAc). Both compounds were separated by flash chromatrography and the slower migrating compound was characterized as compound 11 by comparison of the ¹H-NMR spectra according to data taken from the literature. [44,45] In our hands, compound 11 was isolated in 51% yield. Another compound, tentatively assigned as compound 13 was obtained in 25% (ratio = 2:1). The reaction was repeated several times under the same conditions to confirm a 2:1 ratio for the formation of the nucleosides 11 and 13. Next, compounds 11 and 13 were treated with saturated methanolic ammonia furnishing the nucleoside 12 and the tentatively assigned 14 in 82% and 70% yield, respectively (Scheme 1). The formation of two regioisomeric glycosylation products was supported by a work of Bobek^[47] on the same base 9, but using an azido sugar in the glycosylation reaction. Two glycosylation products were obtained and their structures were assigned to N-7 and N-1 isomers.

SCHEME 1

SCHEME 2

For debromination, the protected compounds 11 and 13 were refluxed in hot ethanol for 3 h with ammonium formate and 10% Pd/C to give the dehalogenated compounds 17 and 15. Toyocamycin (1b) and the tentatively assigned isomer 16 were formed after debenzoylation in methanolic ammonia (Scheme 2). All compounds were characterized by ¹H- and 13 C- NMR spectra and elemental analyses. However, the structures of 16 and its precursors are still ambiguous. For assignment, ¹³C-NMR spectra (Table 1) were measured and coupling constants (Table 2) were determined from gated-decoupled spectra. The signal for the C-2 was unambiguously assigned based on the ¹J (C-2, H-C-2) coupling (>200 Hz). Furthermore, the C-2 carbon of nucleoside 16 shows a ³I (C-2, H-C-1') coupling (3.8) Hz) to the anomeric proton giving a clear indication that the sugar is attached to the pyrimidine moiety. The C-4 signal is assigned by the ³J (C-4, H-C-2) coupling (>11 Hz) to H-C-2. The C-4a signal appears as a singlet in case of the brominated nucleosides 12 and 14. After removal of the bromine atom new couplings are observed to the H-C-6. C-4a shows a ³I (C-4a, H-C-6) coupling (4.5 Hz) (compound **16**). For the C-5 carbon a ² J (C-5, H-C-6) coupling (10.9 Hz) (compound **16**) is observed and the C-6 carbon gives a ¹I (C-6, H-C-6) coupling (188 Hz). The C-7a carbon shows a complex splitting pattern in all nucleosides due to a variety of proximal protons. Here, ³I couplings are possible to either H-C-1', H-C-2 or H-C-6 (Table 2).

From Table 1, it is apparent that all C-2 carbon signals are shifted upfield by about 10 ppm in the case of the N-1 isomers (13, 14, 15, 16) compared to the N-7 glycosylated compounds (11, 12, 17, 1b). Similarly, a downfield shift of about 10 ppm is observed for C-6 while the signal of C-4

 $\textbf{TABLE 1} \quad ^{13}\text{C-NMR chemical shifts (δ [ppm]) of pyrrolo[2,3-d] pyrimidine nucleosides and precursors}^a$

			, 11,	, ,	/1- /-			1				
	C(2) ^b	C(4)	C(4a)	C(5)	C(6)	C(7a)						
	$C(2)^c$	C(6)	C(5)	C(7)	C(8)	C(4)	$C \equiv N$	C(1')	C(2')	C(3')	C(4')	C(5')
6	149.1	155.5	103.2	83.9	124.5	149.6	115.5	ļ	1	I	I	I
11	153.8	156.0	101.8	88.1	121.3	150.1	114.0	89.1	6.69	73.1	78.8	62.4
13	144.6	156.0	104.4	83.8	132.2	144.5	115.7	92.5	70.5	73.7	79.7	63.4
12	153.2	156.1	102.2	87.5	121.7	150.0	114.2	91.1	71.2	70.7	9.98	62.1
14	143.5	155.8	104.3	83.6	131.9	145.0	115.8	92.7	73.7	69.4	85.8	60.4
9 a	153.0	156.8	101.5	81.0	134.3	152.3	116.8	I	1	1	I	I
17	153.8	157.1	101.4	83.9	133.3	150.0	114.9	87.2	70.6	73.5	79.2	63.3
15	145.0	157.4	103.2	82.0	146.4	145.6	117.1	95.9	70.3	73.5	79.4	63.2
116	153.6	157.0	101.2	83.0	132.4	150.2	115.4	87.8	74.2	70.2	85.5	61.2
16	144.3	157.3	103.3	81.8	145.6	145.6	117.1	94.1	73.0	70.2	8.98	61.1
22	144.7	157.2	106.7	102.5	121.6	147.0	I	90.3	74.0	70.7	81.6	63.6
23	143.1	157.6	106.3	102.4	121.1	147.0	I	87.3	74.8	69.7	84.7	60.7
$8^{[29]}$	144.1	158.6	108.7	102.8	121.5	148.1	I	87.2	74.6	70.9	85.4	61.9
		(C)		\(\lambda\)	I		NH.		Z	HZ.		
		4a \rightarrow (e4)		Ţ	<u> </u>	2	~\(\frac{1}{2}\)		:(^	Z Z		
		,z ,z ,z ,z ,z ,z ,z			z. Z.	<u>:</u> =/		ب	<u>z</u> =/			
	9		Ş	_	_	ó >	: - >	Ī		t		
		I	!	I		Ţ	_	=	I			
	오	HO	Ì	공		오	HO		, Р	I		
	system	systematic numbering	purine	purine numbering		systematic numbering	ımbering		purine numbering	ring		
		23		23		14			14			

^aMeasured in DMSO- d_{δ} at 298 K.

^bFirst heading row = systematic numbering.

^cSecond heading row = purine numbering.

		12	14	16
C(2)	¹ J(C2, H-C2)	211	202	210
C(2)	³ J(C2, H-C1′)	n.d.	_	3.8
C(4)	³ J(C4, H-C2)	11.6	11.1	12.0
C(4a)	³ J(C4a, H-C6)	s	s	4.5
C(5)	² J(C5, H-C6)	s	s	10.9
C(6)	¹ J(C6, H-C6)	s	s	188
C(7a)	³ J(C7a, H-C1′) or	m		m
	³ J(C7a, H-C2) or		6.7	
	³ J(C7a, H-C6)		5.5	
C(1')	¹ J(C1', H-C1')	171	164	169
C(2')	¹ J(C2', H-C2')	149	149	149
C(3')	¹ J(C3', H-C3')	147	150	149
C(4')	¹ J(C4′, H-C4′)	148	147	148
C(5')	¹ J(C5′, H-C5′)	140	139	140
C≡N	³ J(CN, H-C6)	s	s	1.4

TABLE 2 Coupling constants J_{C,H} [Hz] of pyrrolo[2,3-d]pyrimidine nucleosides^{a,b}

stays almost unaffected. According to observations made on other isomeric pyrrolo[2,3-d]pyrimidine nucleosides, N-7 was established as glycosylation site for the sugar residues linked to the pyrrole moiety and N-1 for the isomers with the sugar attached to the pyrimidine system. [43,48] In both series of isomers, the removal of the bromine substituent (15, 17) induces a downfield shift for the C-6 (ca. 10 ppm) and an upfield shift of C-5 (Table 1). In addition, the amino group of the isonucleosides (13–16) shows two signals for their exchangeable protons in the ¹H-NMR spectrum. This indicates the nonequivalence of these protons; a hindered rotation has been reported for N-1 alkylated pyrrolo[2,3-d]pyrimidines. [49] Analogously, the structure of the N-1 compound was assigned to formula 16. This structure was further evidenced by single crystal x-ray analysis which is published elsewhere. [50]

Next, UV-data were measured. From Table 3, it is obvious that a change of the glycosylation position causes changes in the UV-spectra. When the UV-spectra of the N-1 nucleosides 14 and 16 are compared to their N-7 counterparts 12 and 1b (toyocamycin), an additional maximum around 312 nm appears, a finding which was already reported for other pyrrolo[2,3-d]pyrimidines with a functionalized pyrrole moiety (compounds 27, $28^{[48]}$).

The formation of the N-1 isomer in the course of glycosylation is in line with methylation experiments performed in our laboratory on the tubercidin base 18 treated under neutral conditions with MeI in dimethylacetamide. [51] In this case, two regiosiomeric methylation products—the N-3 isomer 20a and the N-1 derivative 19a were obtained (Scheme 3). Analogously, neutral alkylation conditions with

^aMeasured in DMSO-d₆ at 298 K.

^bSystematic numbering. s = singlet. m = multiplet.

n.d. = not determined.

TABLE 3 UV data of pyrrolo[2,3-d]pyrimidine nucleosides^a

$Cpd (\lambda_{max})$	Wavelength [nm]	Extinction coefficient (ε)
12 ^[38]	284	18300
	288(sh)	9800
1b	231	9300
	278	15100
27 ^[48]	219	25400
	250	6900
	282	9900
	313	7000
8	259	9100
14	220	25700
	260	11000
	285	12200
	312	9600
16	230	13500
	260	11300
	278	12900
	313	6200
28 ^[48]	216	22600
	272	8700
	292	10000
23	261	8000
	$\stackrel{NH_2}{\downarrow}$	NH_2
	HO OH	HO NATIONAL MARKET

^aMeasured in methanol.

SCHEME 3

isopentenylbromide in HMPA were employed for the synthesis of the 7-deazapurine derivatives of naturally occurring triacanthine **19b**, ^[49] (Scheme 3), showing similar results. The different outcome of the glycosylation reaction performed on the toyocamycin base **9** employing the ribo sugar **10** is the result of the electron-withdrawing character of the pyrrole substituents which changes the nucleophilic character of the ring nitrogens. Consequently, N-7 becomes the most nucleophilic site whereas N-1 is still nucleophilic enough to form the side product **13**. N-3 has lost its nucleophilicity due to the influence of the pyrrole substituents.

2. Glycosylation of 4-hydroxy-7*H*-pyrrolo[2,3-*d*]pyrimidine (21) with 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (10)

of "one-pot" glycosylation changes outcome an 4-hydroxypyrrolo[2,3-d]pyrimidine (21) is used. Now, an exclusive glycosylation at N-3 is observed leading to the protected derivative 22 in quantitative yield which was deblocked in methanolic ammonia furnishing 23 (Scheme 4). This compound was already prepared under HgO catalysis resulting in a significant lower yield at the glycosylation step (25%)^[52]; a similar outcome has been reported for a related derivative. [53] Nucleoside 25 (pyrroloC)^[54] is also formed in almost quantitative yield when the nucleobase 24 is used and the "one-pot" glycosylation is employed (Scheme 4). The deprotected nucleoside 26 is highly fluorescent and is introduced as fluorescence reporter in single- and double-stranded oligonucleotides. [54]

SCHEME 4

A number of 4,5-halogenated pyrrolo[2,3-d]pyrimidine ribonucleosides were prepared by the "one-pot" glycosylation using TMSOTf/BSA. [55] Also, nucleobase anion glycosylation was successful for the synthesis of 6-halogenated derivatives reported by Kazimierczuk [41] and Anderson. [48]

CONCLUSION

The 4-amino-7*H*-pyrrolo[2,3-*d*] pyrimidines such as **9** form the N-7 isomer **11** as main product with the N-1 derivatives as minor component (**13**), when "one-pot" glycosylation conditions (MeCN, silylated base, TMSOTf) are employed. The corresponding 4-hydroxy-7*H*-pyrrolo[2,3-*d*] pyrimidine (**21**) or 2-hydroxy-7*H*-pyrrolo[2,3-*d*] pyrimidine (**24**) give the N-3 isomers almost exclusively. A selective N-7 glycosylation is only accomplished with 5-substituted 4-chloro-7*H*-pyrrolo[2,3-*d*] pyrimidines, ^[55] or 4-phthalimido derivatives bearing electron-withdrawing substituents at C-5 (e.g., halogens) while in the absence of electron-withdrawing substituents the reaction fails. Here, isoproylidene-protected halogenoses have to be used and nucleobase anion glycosylation has to be employed. ^[42,43] The glycosylation reaction is selective when pyrrole precursors are used instead of pyrrolo[2,3-*d*] pyrimidines.

EXPERIMENTAL PART

General

All chemicals were purchased from Acros (Geel, Belgium), Fluka (Taufkirehen, Germany), or Sigma-Aldrich (Sigma-Aldrich Chemie GmbH, Deisenhofen, Germany). Solvents were of laboratory grade. Thin layer chromatography (TLC): aluminium sheets, silica gel 60 F254 (0.2 mm; Merck, Darmstadt, Germany). Flash column chromatography (FC): silica gel 60 (VWR, Darmstadt, Germany) at 0.4 bar; sample collection with an Ultra Rac II (Bromma, Sweden) fractions collector (LKB Instruments, Sweden). UV spectra: U-3200 spectrometer (Hitachi, Tokyo, Japan); NMR spectra: Avance-DPX-300 spectrometer (Bruker, Rheinstetten, Germany), at 300 MHz for 1 H and 13 C; δ in ppm relative to Me₄Si as internal standard. The J values are given in Hz. Elemental analyses were performed by Mikroanalytisches Laboratorium Beller (Göttingen, Germany).

4-Amino-6-bromo-5-cyano-7*H***-pyrrolo[2,3-***d*]**pyrimidine** (9): Compound 9 was prepared as described. [46] Analytical data: TLC (SiO₂, CH₂Cl₂/MeOH 9:1): R_f 0.57. ¹H-NMR (DMSO-d₆): 8.22 (s, 1H, H-C(2)); 7.21 (s, 2H, NH₂). Analytical data are identical with those obtained earlier. [46]

4-Amino-5-cyano-7*H***-pyrrolo[2,3-***d***]pyrimidine (9a)**: Compound **9a** was prepared as described. [46] TLC (SiO₂, CH₂Cl₂/MeOH 9:1): R_f 0.4. ¹*H*-NMR

(DMSO- d_6): 8.16 (s, 1H, H-C(2)); 8.09 (s, 1H, H-C(6)); 6.60 (s, 2H, NH₂). Analytical data are identical with those obtained earlier.^[46]

Glycosylation of 4-amino-6-bromo-5-cyano-7*H*-pyrrolo[2,3-*d*]pyrimidine (9) with 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (10): The glycosylation was performed as described earlier by Townsend et al. [45] Compound 9 (2.4 g, 10 mmol) was suspended in dry acetonitrile. *N*,*O*-Bis(trimethylsilyl)acetamide (4.1 g, 2.9 ml, 20 mmol) was added and the mixture was stirred for 15 minutes. Then, 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl- β -D-ribofuranose (5.0 g, 10 mmol) and trimethylsilyl trifluoromethanesulfonate (6.7 g, 5.4 ml, 30 mmol) were added. Within 10 minutes, the suspension became a clear yellow solution. This solution was heated at 80°C for 3 h, cooled and extracted with ethyl acetate. The organic layer was washed with saturated bicarbonate solution and brine, dried, evaporated and applied to FC (silica gel, column 20 × 5 cm, CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 4:1). After flash chromatography (FC) two main zones were obtained. The fast migrating zone furnished compound 13 (25%) and the slower migrating zone furnished compound 11 (51%).

4-Amino-6-bromo-5-cyano-1-(2,3,5-tri-*O***-benzoyl-***β***-D-ribofuranosyl)-7***H***-pyrrolo[2,3-***d***]pyrimidine** (**13**): From the faster migrating zone compound **13** (1.7g, 25%) was isolated as colorless foam. TLC (SiO₂, CH₂Cl₂/EtOAc 4:1): R_f 0.64. UV (MeOH): λ_{max} 315 (ε 8200), 283 (ε 4900), 266 (ε 12900), 231 (ε 53700). ¹H-NMR (DMSO-d₆): 8.79 (bs, 1H, NH), 8.69 (s, 1H, H-C(2)), 7.91, 7.64, 7.46 (3m, 16H, arom.H, NH), 6.63 (d, J = 2.4, 1H, H-C(1')), 6.31 (m, 2H, H-C(2'), H-C(3')), 4.79 (m, 3H, H-C(4'), H-C(5')). Anal. Calc. for C₃₃H₂₄BrN₅O₇ (682.48): C 58.08, H 3.54, N 10.26; found C 58.10, H 3.65, N 10.20.

4-Amino-6-bromo-5-cyano-7-(2,3,5-tri-*O***-benzoyl-***β***-D-ribofuranosyl)-7-pyrrolo[2,3-d]pyrimidine** (11): From the slower migrating zone compound 11 (3.5g, 51%) was isolated as colorless foam. TLC (SiO₂, CH₂Cl₂/EtOAc 4:1): R_f 0.45. ¹H-NMR (DMSO-d₆): 8.16 (s, 1H, H-C(2)), 7.90, 7.85, 7.45 (3m, 15H, arom.H), 7.12 (s, 2H, NH₂), 6.61 (m, H-C(1')), 6.43 (m, 2H, H-C(2'), H-C(3')), 4.87 (m, 2H, H-C(5')), 4.60 (m, 1H, H-C(4')). Analytical data are identical to those reported earlier. ^[45]

4-Amino-5-cyano-7-(2,3,5-tri-*O***-benzoyl-***β***-D-ribofuranosyl)-7***H***-pyrrolo** [**2,3-***d*]**pyrimidine** (**17**): The compound was prepared according to a procedure published earlier^[45] with **11** (1.0 g, 1.46 mmol) and ammonium formate (1.0 g, 15 mmol) and 10% Pd on activated charcoal. After FC (column 20 × 5 cm, CH₂Cl₂ \rightarrow CH₂Cl₂/EtOAc 4:1) compound **17** (750 mg, 85%, Lit.^[45]: 85%) was obtained as colorless foam. TLC (SiO₂, CH₂Cl₂/EtOAc 4:1): R_f 0.25. ¹H-NMR (DMSO-d₆): 8.52 (s, 1H, H-C(6)), 8.17 (s, 1H, H-C(2)), 7.92, 7.86, 7.46 (3m, 15H, arom.H), 6.99 (s, 2H, NH₂), 6.61 (d, J = 4.6, 1H, H-C(1')), 6.33 (t, J = 4.7, 1H, H-C(2')), 6.18 (t, J = 5.8, 1H, H-C(3')), 4.85 (m, 2H, H-C(5')), 4.67 (m, 1H, H-C(4')). Analytical data are identical to those reported earlier.^[45]

4-Amino-6-bromo-5-cyano-7-(β -D-ribofuranosyl)-7H-pyrrolo[2,3-d]

pyrimidine (14): Compound 13 (1.0 g, 1.47 mmol) was stirred in MeOH saturated with ammonia (50 ml) overnight. The solvent was evaporated and the residual foam was adsorbed on silica gel (20 g) and applied to FC (silica gel, column 15 × 5 cm, CH₂Cl₂→CH₂Cl₂/MeOH 95:5). Evaporation of the main zone afforded 14 (380 mg, 70%) as colorless foam. Recrystallisation from MeOH furnished colorless crystals. m.p.: 195–198°C, dec. TLC (SiO₂, CH₂Cl₂/MeOH 95:5): R_f 0.20. UV (MeOH): λ_{max} 285 (ε 19000); (Lit. [38] 284 (ε 18300)). ¹H-NMR (DMSO-d₆): 8.20 (s, 1H, H-C(2)), 7.08 (s, 2H, NH₂), 5.93 (d, J = 6.5, 1H, H-C(1')), 5.46 (d, J = 6.1, 1H, HO-C(2')), 5.33 (m, 1H, HO-C(3')), 5.25 (d, J = 4.7, 1H, HO-C(5')), 5.05 (d, J = 6.1, 1H, H-C(2')), 4.21 (d, J = 2.7, H-C(3')), 3.97 (d, J = 2.9, 1H, H-C(4')), 3.70, 3.54 (2m, 2H, H-C(5')). Analytical data are identical to those reported earlier. [38]

4-Amino-5-cyano-7-(*β*-**D-ribofuranosyl**)-*7H*-**pyrrolo**[**2,3-***d*]**pyrimidine** (**toyocamycin**, (**1b**)): As described earlier^[45] with compound **17** (0.6 g, 1 mmol) and saturated methanolic ammonia (50 ml). Compound **1b** was obtained as colorless solid (240 mg, 82%). TLC (SiO₂, CH₂Cl₂/MeOH 9:1) R_f 0.35. ¹H-NMR (DMSO-d₆): 8.45 (s, 1H, H-C(2)), 8.22 (s, 1H, H-C(6)), 6.92 (s, 2H, NH₂), 6.05 (d, J = 5.6, 1H, H-C(1')), 5.48 (d, J = 6.0, 1H, HO-C(2')), 5.22 (m, 2H, HO-C(3'), HO-C(5')), 4.36 (d, J = 6.1, H-C(2')), 4.09 (d, J = 2.7, 1H, H-C(3')), 3.92 (d, J = 3.5, 1H, H-C(4')), 3.62 (m, 2H, H-C(5')). Analytical data are identical to those reported earlier. ^[38,44,45]

4-Amino-5-cyano-1-(2,3,5-tri-O-benzoyl- β -D-ribofuranosyl)-7H-pyrrolo [2,3-d] pyrimidine (15): Compound 13 (1.32 g, 1.9 mmol) was suspended in EtOH (40 ml). Then, ammonium formate (1.0 g, 15 mmol) and 10% Pd on activated charcoal (100 mg) was added and the solution was stirred for 3 hours under reflux. The solution was filtrated through a bed of Celite and the Celite was washed with hot EtOH (2 \times 50 ml). The solvent of the filtrate was evaporated and the remaining residue was dissolved in CH₂Cl₂, adsorbed on silica gel (25 g) and applied to FC (silica gel, column 20×5 cm, $CH_2Cl_2 \rightarrow CH_2Cl_2/EtOAc$ 4:1). Evaporation of the main zone furnished compound 15 (960 mg, 82%) as colorless foam. TLC (SiO₂, CH₂Cl₂/EtOAc 4:1): R_f 0.50. UV (MeOH): λ_{max} 314 (ε 6500), 283 (ε 12200), 268 sh (ε 10200), 231 (ε 44700). ¹H-NMR (DMSO-d₆): 8.69 (s, 2H, H-C(2), NH), 7.90, 7.62, 7.45 (3m, 17H, arom.H, H-C(6), NH), 6.61 (m, 1H, H-C(1')), 6.42 (m, 2H, H-C(2'), H-C(3')), 4.80 (m, 3H, H-C(4'), H-C(5')). Anal Calc. for C₃₃H₂₅N₅O₇ (603.58): C 65.67, H 4.17, N 11.60; found C 65.58, H 4.18, N 11.52.

4-Amino-6-bromo-5-cyano-1-(β -D-ribofuranosyl)-7H-pyrrolo[2,3-d] pyrimidine (14): Compound 13 (600 mg, 0.88 mmol) was suspended in saturated methanolic ammonia (50 ml) and the mixture was stirred for 12 hours. The solvent was evaporated and the foamy residue was adsorbed on silica gel (25 g) and applied to FC (silica gel, column 20 \times 5 cm,

CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 95:5). Evaporation of the main zone afforded 14 as amorphous solid (250 mg, 77%). TLC (SiO₂, CH₂Cl₂/MeOH 9:1): R_f 0.22. UV (MeOH): λ_{max} 312 (ϵ 9600), 285 (ϵ 12200), 260 (ϵ 11000), 220 (ϵ 25700). ¹H-NMR (DMSO-d₆): 8.79 (s, 1H, H-C(2)), 8.57 (bs, 1H, NH), 7.39 (bs, 1H, NH), 6.07 (d, J = 4.3, 1H, H-C(1')), 5.62 (d, J = 5.5, 1H, HO-C(2')), 5.49 (m, 1H, HO-C(3')), 5.22 (d, J = 5.1, 1H, HO-C(5')), 4.45 (m, 1H, H-C(2')), 4.13 (m, 1H, H-C(3')), 4.02 (m, 1H, H-C(4')), 3.77, 3.61 (2m, 2H, H-C(5')). Anal Calc. for C₁₂H₁₂BrN₅O₄ (370.16): C 38.94, H 3.27, N 18.92; found C 38.85, H 3.30, N, 18.81.

4-Amino- 5-cyano- 1- (β-D-ribofuranosyl)- 7*H*- pyrrolo [2,3-*d*] pyrimidine (16): Compound 15 (750 mg, 1.2 mmol) was suspended in saturated methanolic ammonia (50 ml). The solution was stirred for 12 hours, then the solvent was evaporated and the remaining residue was adsorbed on silica gel (25 g). FC (silica gel, column 15 × 4 cm, CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 95:5) furnished compound 16 (300 mg, 82%) as colorless solid. Crystallisation from MeOH gave colorless crystals: m.p.: 189–192°C, dec. TLC (SiO₂, CH₂Cl₂/MeOH 9:1): R_f 0.41. UV (MeOH): λ_{max} 313 (ε 6200), 278 (ε 12900), 260 (ε 11300), 230 (ε 13500). ¹H-NMR (DMSO-d₆): 8.73 (s, 1H, H-C(2)), 8.49 (bs, 1H, NH), 7.85 (s, 1H, H-C(6)), 7.20 (bs, 1H, NH), 6.23 (m, 1H, H-C(1')), 6.02 (d, J = 5.5, 1H, HO-C(2')), 5.60 (d, J = 5.8, 1H, HO-C(3')), 5.21 (d, J = 4.5, 1H, HO-C(5')), 4.65 (m, 1H, H-C(2')), 4.10 (m, 2H, H-C(3')), H-C(4')), 3.60 (m, 2H, H-C(5')). Anal Calc. for C₁₂H₁₃N₅O₄ (291.26): C 49.48, H 4.50, N 24.04; found C 49.49, H 4.61, N 23.90.

3-(2,3,5-Tri-O-benzoyl-\beta-D-ribofuranosyl)-3,7-dihydro-4H-pyrrolo[2,3**d]pyrimidin-4-one** (22): To a suspension of 3,7-dihydro-4*H*-pyrrolo[2,3d]pyrimidin-4-one (21) (220 mg, 1.63 mmol) in dry acetonitrile, N, O-bis(trimethylsilyl)acetamide (1.6 g, 1.1 ml, 4.43 mmol) was added and the mixture stirred for 10 minutes at room temperature Then, 1-O-acetyl-2,3,5-tri-O-benzoyl- β -D-ribofuranose (10) (1.34 g, 2.65 mmol) and trimethylsilyl trifluoromethanesulfonate (430 mg, 0.35 ml, 1.79 mmol) were introduced. The mixture was stirred for another 15 minutes at room temperature During this time the suspension became a clear yellow solution. This solution was heated at 80°C for 3h in a preheated oil-bath. The solution was cooled and diluted with ethyl acetate. The organic layer was washed with saturated bicarbonate solution and brine, dried, evaporated and applied to FC (silica gel, column 20 × 5 cm, CH₂Cl₂/acetone 15:1). From FC one main zone was obtained. The solvent was evaporated and the title compound 22 was obtained as colorless foam (920 mg, 98%). TLC $(SiO_2, CH_2Cl_2/EtOAc 4:1)$: $R_f 0.4$. UV (MeOH): λ_{max} 262 (ε 18000), 228 (ε 84000). ¹H-NMR (DMSO-d₆): 12.11 (s, 1H, NH), 8.33 (s, 1H, H-C(2)), 8.04–7.42 (4m, 15H, arom. H), 7.13 (d, J = 2.8, 1H, H-C(6)), 6.55 (d, J = 2.8, 1H, H-C(5)), 6.38 (d, J = 2.3, 1H, H-C(1')), 6.12 (m, 2H, H-C(2'), H-C(3')), 4.73 (m, 3H, H-C(4'), H-C(5')). Anal Calc. for $C_{32}H_{25}N_3O_8$ (579.56): C 66.32, H 4.35, N 7.25; found C 66.24, H 4.19, N 7.19.

3- (β-D-Ribofuranosyl)- 3,7- dihydro- 4*H*-pyrrolo [2,3-*d*]pyrimidin-4-one (23): Compound 22 (1.08 g, 1.86 mmol) was suspended in saturated methanolic ammonia (40 ml) and the mixture was stirred for 12 hours. The solvent was evaporated and the residual foam was adsorbed on silica gel (20 g) and applied to FC (silica gel, column 15 × 5 cm, CH₂Cl₂/MeOH 20:1 \rightarrow CH₂Cl₂/MeOH 4:1). Evaporation of the main zone afforded 23 (410 mg, 82%) as colorless foam. TLC (SiO₂, CH₂Cl₂/MeOH 9:1): R_f 0.20. UV (MeOH): λ_{max} 261 (ϵ 16000). ¹H-NMR (DMSO-d₆): 11.87 (s, 1H, NH), 8.43 (s, 1H, H-C(2)), 7.07 (d, J = 2.9, 1H, H-C(6)), 6.48 (m, 2H, H-C(5)), 6.15 (d, J = 4.7, 1H, H-C(1')), 5.38 (d, J = 5.5, 1H, HO-C(3')), 5.14 (t, J = 5.0, 1H, HO-C(5')), 5.11 (d, J = 6.9, 1H, HO-C(2')), 4.13 (m, 2H, H-C(2'), H-C(3')), 3.91 (m, 1H, H-C(4')), 3.68, 3.61 (2m, 2H, H-C(5')). Anal Calc. for C₁₁H₁₃N₃O₅ (267.24): C 49.44, H 4.90, N 15.72; found C 49.53, H 4.82, N 15.61.

REFERENCES

- Robins, M.J.; Wilson, J.S.; Hansske, F. A general procedure for the efficient deoxygenation of secondary alcohols. Regiospecific and stereoselective conversion of ribonucleosides to 2'deoxynucleosides. J. Am. Chem. Soc. 1983, 105, 4059–4065.
- Robins, M.J.; Wilson, J.S.; Madej, D.; Low, N.H.; Hansske, F.; Wnuk, S.F. Efficient conversions of ribonucleosides into their 2',3'-anhydro, 2'(and 3')-deoxy, 2',3'-didehydro-2',3'-dideoxy, and 2',3'dideoxynucleoside analogs. J. Org. Chem. 1995, 60, 7902–7908.
- De Clercq, E.; Balzarini, J.; Madej, D.; Hansske, F.; Robins, M.J. Nucleic acid related compounds.
 Synthesis and biological properties of sugar modified analogs of the nucleoside antibiotics tubercidin, toyocamicin, sangivamicin, and formycin. J. Med. Chem. 1987, 30, 481–486.
- Suhadolnik, R.J. Pyrrolopyrimidine Nucleosides, in Nucleoside Antibiotics, Wiley Interscience, New York, 1970, pp. 298–353.
- Martin, J.C. Nucleotide Analogues as Antiviral Agents. American Chemical Society, Washington, 1989.
- Ritch, P.S.; Glazer, R. I. Pyrrolo [2,3-d] pyrimidine nucleosides, in *Developments in Cancer Chemother-apy*, ed. R.I. Glazer; CRC Press, Boca Raton, Florida, 1984, pp. 1–33.
- Seela, F.; Winkeler, H.-D.; Ott, J.; Tran-Thi, Q.-H.; Hasselmann, D.; Franzen, D.; Bussmann, W. Synthesis of pyrrolo[2,3-d]pyrimidine nucleosides by phase-transfer glycosylation and their function in polynucleotides., in *Nucleosides, Nucleotides and Their Biological Applications*, ed. J.L. Rideout, D.W. Henry, L.M. Beacham, III; Academic Press, New York, 1983, pp. 181–208.
- 8. Revankar, G.R.; Robins, R.K. Pyrrolo[2,3-d]pyrimidine (7-deazapurine) nucleosides, in *Chemistry of nucleosides and nucleotides*, ed. L.B. Townsend; Plenum Press, New York, 1991, pp. 200–247 and references cited therein.
- 9. Isono, K. Current progress on nucleoside antibiotics. Pharmacol. Ther. 1991, 52, 269-286.
- Seela, F.; Peng, X. Base-modified oligodeoxyribonucleotides: Using pyrrolo[2,3-d]pyrimidines to replace purines, in *Current Protocols in Nucleic Acid Chemistry*, S.L. Beaucage, D.E. Bergstrom, G.D. Glick, R.A. Jones; John Wiley & Sons, 2005, pp. 4.25.1–4.25.24.
- 11. Seela, F.; Peng, X. Synthesis and properties of 7-substituted 7-deazapurine (pyrrolo[2,3-d]pyrimidine) 2'-deoxyribonucleosides, S.L. Beaucage, D.E. Bergstrom, G.D. Glick, R.A. Jones; John Wiley & Sons, 2005, pp. 1.10.1–10.20.
- 12. Seela, F.; Peng, X.; Budow, S. Advances in the synthesis of 7-deazapurine-pyrrolo[2,3-d]pyrimidine-2'-deoxyribonucleosides including D-and L-enantiomers, fluoro derivatives and 2',3'-dideoxyribonucleosides. *Curr. Org. Chem.* **2007**, 11, 427–462.

- Suhadolnik, R.J. Pyrrolopyrimidine nucleosides analogs, in *Nucleosides as Biological Probes*; Wiley-Interscience, New York, 1979, pp. 158–169.
- 14. Nakamura, G. On streptomyces producing a new antibiotic tubercidin. J. Antibiot. 1961, 14A, 90-93.
- Nishimura, H.; Katagiri, K.; Sato, K.; Mayama, M.; Shimaoka, N. Toyocamycin, a new anti-candida antibiotics. J. Antibiot. 1956, 9A, 60–62.
- 16. Ohkuma, K. Chemical structure of toyocamycin. J. Antibiot. 1961, 14A, 343–352.
- 17. Kazlauskas, R.; Murphy, P.T.; Wells, R.J.; Baird-Lambert, J.A.; Jamieson, D.D. Halogenated pyrrolo[2,3-d]pyrimidine nucleosides from marine organisms. *Aust. J. Chem.* 1983, 36, 165–170.
- Kasai, H.; Ohashi, Z.; Harada, F.; Nishimura, S.; Oppenheimer, N.J.; Crain, P.F.; Liehr, J.G.; von Minden, D.L.; McCloskey, J.A. Structure of the modified nucleoside Q isolated from *Escherichia coli* transfer ribonucleic acid. 7-(4,5-cis-dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. *Biochemistry* 1975, 14, 4198–4208.
- Seela, F.; Hasselmann, D. Synthese von 2-Amino-3,7-dihydro-7-(β-D-ribufuranosyl-4H-pyrrolo[2,3-d]pyrimidin-4-on-7-Desazaguanosin-der Stammverbindung des Nucleosids Q. Chem. Ber. 1981, 114, 3395-3402.
- Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K. Mycalisines -A and B, novel nucleosides which inhibit cell division of fertilized starfish eggs, from the marine sponge *Mycale sp. Tetrahedron Lett.* 1985, 26, 3483–3486.
- Meade, E.A.; Krawczyk, S.H.; Townsend, L.B. A total synthesis of the naturally occurring pyrrolo[2,3-d]pyrimidine nucleoside mycalisine A. *Tetrahedron Lett.* 1988, 29, 4073–4076.
- Tanaka, N.; Wu, R.T.; Okabe, T.; Yamashita, H.; Shimazu, A.; Nishimura, T. Cadeguomycin, a novel nucleoside analog antibiotic. I. the producing organism, production and isolation of cadeguomycin. J. Antibiot. 1982, 35, 272–278.
- Naruto, S.; Uno, H.; Tanaka, A.; Kotani, H.; Takase, Y. Kanagawamicin, a new aminonucleoside analog antibiotic from actinoplanes kanagawaensis. *Heterocycles* 1983, 20, 27–32.
- Shomura, T.; Nishizawa, N.; Iwata, M.; Yoshida, J.; Ito, M.; Amano, S.; Koyama, M.; Kojima, M.; Inouye, S. Studies on a new nucleoside antibiotic, dapiramicin, I. producing organism, assay method and fermentation. *J. Antibiot.* 1983, 36, 1300–1304.
- Nishizawa, N.; Kondo, Y.; Koyama, M.; Omoto, S.; Iwata, M.; Tsuruoka, T.; Inouye, S. Studies on a new nucleoside antibiotic, dapiramicin, II. Isolation, physico-chemical and biological characterization. J. Antibiot. 1984, 37, 1–5.
- Seto, H.; Otake, N.; Koyama, M.; Ogino, H.; Kodama, Y.; Nishizawa, N.; Tsuruoka, T.; Inouye, S. The structure of a novel nucleoside antibiotic, dapiramicin -A. *Tetrahedron Lett.* 1983, 24, 495–498.
- 27. Nishioka, H.; Sawa, T.; Nakamura, H.; Iinuma, H.; Ikeda, D.; Sawa, R.; Naganawa, H.; Hayashi, C.; Hamada, M.; Takeuchi, T.; Iitaka, Y.; Umezawa, K. Isolation and structure determination of novel phosphatidylinositol kinase inhibitors, echiguanines A and B, from *streptomyces sp. J. Nat. Prod.* **1991**, 54, 1321–1325.
- Shih, C.; Hu, Y. A short and efficient synthesis of echiguanines A and B: Potent inhibitors of phosphatidylinositol-4-kinase. *Tetrahedron Lett.* 1994, 35, 4677–4680.
- Kim, J.; Pordesimo, E. O.; Toth, S. I.; Schmitz, F. J.; van Altena, I. Pantherinine, a cytotoxic aromatic alkaloid, and 7-deazainosine from the ascidian aplidium pantherinum. J. Nat. Prod. 1993, 56, 1813–1816.
- Seela, F.; Hasselmann, D. Synthese von 7-Desazainosin durch Phasentranferglycosidierung. Chem. Ber. 1980, 113, 3389–3393.
- 31. Patil, V.D.; Wise, D.S.; Wotring, L.L.; Bloomer, L.C.; Townsend, L.B. Synthesis and biological activity of a novel adenosine analog, 3-β-D-ribofuranosylthieno[2,3-d]pyrimidin-4-one. *J. Med. Chem.* **1985**, 28, 423–427.
- Mizuno, Y.; Ikehara, M.; Watanabe, K.A.; Suzaki, S. Synthesis of 4-hydroxy-7-β-D-ribofuranosyl-7Hpyrrolo[2,3-d]pyrimidine, a tubercidin analog. J. Org. Chem. 1963, 28, 3331–3336.
- Tolman, R.L.; Robins, R.K.; Townsend, L.B. Pyrrolo [2,3-d] pyrimidine nucleoside antibiotics. Total synthesis and structure of toyocamycin, unamycin B, vengicide, antibiotic E-212, and sangivamycin (BA-90912). J. Am. Chem. Soc. 1968, 90, 524–526.
- Saito, Y.; Kato, K.; Umezawa, K. Synthesis and structure-activity relationship of ribofuranosyl echiguanine analogs as inhibitors of phosphatidylinositol 4-kinase. *Tetrahedron* 1998, 54, 4251–4266.
- 35. Tolman, R.L.; Tolman, G.L.; Robins, R.K.; Townsend, L.B. Synthesis of 1,3 and 7-β-D-ribofuranosylpyrrolo[2,3-d]pyrimidines via silylated intermediates. *J. Heterocycl. Chem.* **1970**, 7, 799–806.

- Girgis, N.S.; Michael, M.A.; Smee, D.F.; Alaghamandan, H.A.; Robins, R.K.; Cottam, H.B. Direct C-glycosylation of guanine analogs: the synthesis and antiviral activity of certain 7- and 9deazaguanine C-nucleosides. *J. Med. Chem.* 1990, 33, 2750–2755.
- Seela, F.; Debelak, H. The C8-(2'-deoxy-β-d-ribofuranoside) of 7-deazaguanine: Synthesis and base pairing of oligonucleotides with unusually linked nucleobases. J. Org. Chem. 2001, 66, 3303– 3312.
- Tolman, R.L.; Robins, R.K.; Townsend, L.B. Total synthesis of toyocamycin, sangivamycin, tubercidin, and related derivatives. J. Am. Chem. Soc. 1969, 91, 2102–2108.
- a) Winkeler, H.-D.; Seela, F. Synthesis of 2-amino-7-(2'-deoxy-beta-D-erythro-pentofuranosyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one, a new isostere of 2'-deoxyguanosine. J. Org. Chem. 1983, 48, 3119–3122. b) Seela, F.; Westermann, B.; Bindig, U. Liquid-liquid and solid-liquid phase-transfer glycosylation of pyrrolo[2,3-d]-pyrimidines: stereospecific synthesis of 2-deoxy-β-p-ribofuranosides related to 2'-deoxy-7-carbaguanosine. J. Chem. Soc., Perkin Trans. 1 1988, 697–702. c) Kazimierczuk, Z.; Cottam, H.B.; Revankar, G.R.; Robins, R.K. Synthesis of 2'-deoxytubercidin, 2'-deoxyadenosine, and related 2'-deoxynucleosides via a novel direct stereospecific sodium salt glycosylation procedure. J. Am. Chem. Soc. 1984, 106, 6379–6382.
- Seela, F.; Lüpke, U.; Hasselmann, D. Ribosidierung von Pyrolo[2,3-d]pyrimidinen in Gegenwart starker Basen. Chem. Ber. 1980, 113, 2808–2813.
- Kazimierczuk, Z.; Revankar, G.R.; Robins, R.K. Total synthesis of certain 2-, 6-mono and 2,6disubstituted-tubercidin derivatives. Synthesis of tubercidin via the sodium salt glycosylation procedure. *Nucleic Acids Res.* 1984, 12, 1179–1192.
- 42. a) Zhang, L.; Zhang, Y.; Li, X.; Zhang, L. Study on the synthesis and PKA-I binding activities of 5-alkynyl tubercidin analogues. *Bioorg. Med. Chem.* 2002, 10, 907–912. b) Ramasamy, K.; Robins, R.K.; Revankar, G.R. Direct synthesis of pyrrole nucleosides by the stereospecific sodium salt glycosylation procedure. *J. Heterocycl. Chem.* 1987, 24, 863–868. c) Wilcox, C.S.; Otoski, R.M. Stereoselective preparations of ribofuranosyl chlorides and ribofuranosyl acetates. Solvent effects and stereoselectivity in the reaction of ribofuranosyl acetates with trimethylallylsilane. *Tetrahedron Lett.* 1986, 27, 1011–1014.
- 43. Ramasamy, K.; Imamura, N.; Robins, R.K.; Revankar, G.R. Facile and improved synthesis of tubercidin and certain related [2,3-d]pyrimidine nucleosides by the stereospecific sodium salt glycosylation procedure. J. Heterocycl. Chem. 1988, 25, 1893–1898. a) Rosemeyer, H.; Seela, F. Stereoselective synthesis of pyrrolo[2,3-d]pyrimidine α- and β-D-ribonucleosides from anomerically pure D-ribofuranosyl chlorides: solid-liquid phase-transfer glycosylation and ¹⁵N-NMR spectra. Helv. Chim. Acta 1988, 71, 1573–1585.
- Sharma, M., Bloch, A., Bobek, M. A practical synthesis of the antibiotic toyocamycin. *Nucleosides Nucleotides* 1993, 12 (6), 643–648.
- Porcari, A.R.; Townsend, L.B. Total synthesis of the naturally occurring antibiotic toyocamycin using new and improved synthetic procedures. *Nucleosides Nucleotides* 1999, 18 (2), 153– 159.
- 46. a) Porcari, A.R.; Townsend, L.B. An improved synthesis of the versatile heterocycle, 4-amino-6-bromo-5-cyanopyrrolo[2,3-d]pyrimidine. Synth. Commun. 1998, 28, 3835–3843. b) Dang, Q.; Gomez-Galeno, J.E. An efficient synthesis of pyrrolo[2,3-d]pyrimidines via inverse electron demand Diels-Alder reactions of 2-amino-4-cyanopyrroles with 1,3,5-triazines. J. Org. Chem. 2002, 67, 8703–8705. c) Taylor, E.C.; Hendess, R.W. Synthesis of pyrrolo[2,3-d]pyrimidines. The aglycone of toyocamycin. J. Am. Chem. Soc. 1965, 87, 1995–2003.
- Huang, B.-G.; Bobek, M. Synthesis and in vitro antitumor activity of some amino-deoxy 7hexofuranosylpyrrolo[2,3-d]pyrimidines. Carbohydr. Res. 1998, 308, 319–328.
- Anderson, J.D.; Bontems, R.J.; Geary, S.; Cottam, H.B.; Larson, S.B.; Matsumoto, S.S.; Smee, D.F.; Robins, R.K. Synthesis of tubercidin, 6-chlorotubercidin and related nucleosides. *Nucleosides Nucleotides Nucleic Acids* 1989, 8, 1201–1216.
- Seela, F.; Bussmann, W. Synthesis of 7-dezatriacanthine and restricted rotation of amino groups in pyrrolo[2,3-d] pyrimidines. Nucleosides Nucleotides 1984, 3, 195–206.
- 50. Leonard, P.; Ingale, S.A.; Eickmeier, H.; Reuter, H.; Seela, F. Acta Cryst., 2009, in press.
- 51. Seela, F.; Bussmann, W. Die isomeren 4-Amino-N-methylpyrrolo[2,3-d]pyrimidine. Chem. Ber. 1981, 114, 2056–2063.
- Lüpke, U.; Seela, F. Ribosidierung von 7H-Pyrrolo[2,3-d]pyrimidin-4(3H)-on an N-3. Chem. Ber. 1979, 112, 3526–3529.

- Ciliberti, N.; Durini, E.; Manfredini, S.; Vertuani, S. 7-Deazainosine derivatives: Synthesis and characterization of 7- and 7,8-substituted pyrrolo[2,3-d]pyrimidine ribonucleosides. *Nucleosides Nucleoi Acids* 2008, 27, 525–533.
- 54. Seela, F.; Schweinberger, E.; Xu, K.; Sirivolu, V.R.; Rosemeyer, H.; Becker, E.-M. 1, N⁶-Etheno-2'-deoxytubercidin and pyrrolo-C: synthesis, base pairing, and fluorescence properties of 7-deazapurine nucleosides and oligonucleotides. *Tetrahedron* 2007, 63, 3471–3482.
- 55. Seela, F.; Ming, X. 7-Functionalized 7-deazapurine β-D and β-L-ribonucleosides related to tubercidin and 7-deazainosine: glycosylation of pyrrolo[2,3-d]pyrimidines with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D or β-L-ribofuranose. Tetrahedron 2007, 63, 9850–9861.
- Bio, M.M.; Xu, F.; Waters, M.; Williams, J.M.; Savary, K.A.; Cowden, C.J.; Yang, C.; Buck, E.; Song, Z.J.; Tschaen, D.M.; Volante, R.P.; Reamer, R.A.; Grabowski, E.J.J. Practical synthesis of a potent hepatitis C virus RNA replication inhibitor. *J. Org. Chem.* 2004, 69, 6257–6266.
- 57. Ramasamy, K.; Robins, R.K.; Revankar, G.R. Total synthesis of 2'deoxytoyocamycin, 2'-deoxytoyocamycin and related 7-β-D-arabinofuranosylpyrrolo[2,3-d]pyrimidines via ring closure of pyrrole precursors prepared by the stereospecific sodium salt glycosylation procedure. *Tetrahedron* 1986, 42, 5869–5878.